GCE Examinations Advanced Subsidiary / Advanced Level

Decision Mathematics Module D2

Paper B MARKING GUIDE

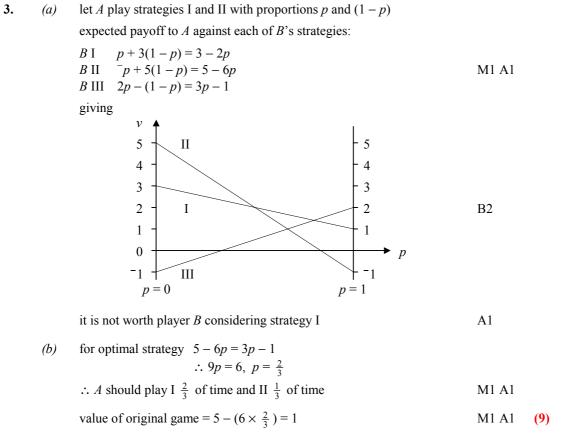
This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

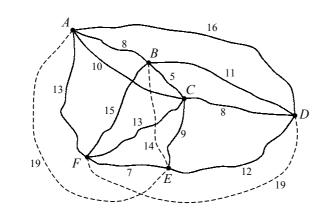
(B) marks are independent of method marks.

Written by Craig Hunter, Edited by Shaun Armstrong © Solomon Press


These sheets may be copied for use solely by the purchaser's institute.

D2 Paper B – Marking Guide

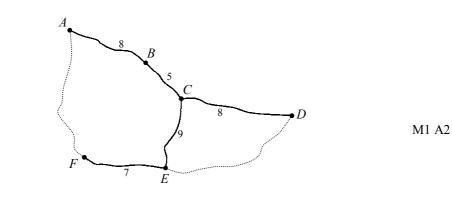
1	
L	•


2.

	start at A: tour is $AEDBCA$ length = $6 + 9 + 7 + 11 + 16 = 49$ kmstart at B: tour is $BDEACB$ length = $7 + 9 + 6 + 16 + 11 = 49$ kmstart at C: tour is $CBDEAC$ length = $11 + 7 + 9 + 6 + 16 = 49$ kmstart at D: tour is $DBAECD$ length = $7 + 8 + 6 + 14 + 13 = 48$ kmstart at E: tour is $EABDCE$ length = $6 + 8 + 7 + 13 + 14 = 48$ km	M1 A1 M1 A2	
	best upper bound = 48 km	A1	(6)
(a)	$x_{11} = \begin{cases} 1 & \text{if team 1 is assigned to Maths} \\ 0 & \text{otherwise} \end{cases}$ $x_{12} = \begin{cases} 1 & \text{if team 1 is assigned to English} \\ 0 & \text{otherwise} \end{cases}$ $x_{13} = \begin{cases} 1 & \text{if team 1 is assigned to Verbal} \\ 0 & \text{otherwise} \end{cases}$ $x_{21} = \begin{cases} 1 & \text{if team 2 is assigned to Maths} \\ 0 & \text{otherwise} \end{cases}$ $x_{22} = \begin{cases} 1 & \text{if team 2 is assigned to English} \\ 0 & \text{otherwise} \end{cases}$ $x_{23} = \begin{cases} 1 & \text{if team 2 is assigned to Verbal} \\ 0 & \text{otherwise} \end{cases}$ $x_{31} = \begin{cases} 1 & \text{if team 3 is assigned to Maths} \\ 0 & \text{otherwise} \end{cases}$ $x_{32} = \begin{cases} 1 & \text{if team 3 is assigned to English} \end{cases}$	B2	
(b)	$\begin{cases} 0 & \text{otherwise} \\ x_{33} = \begin{cases} 1 & \text{if team 3 is assigned to Verbal} \\ 0 & \text{otherwise} \end{cases}$		
(0)	$z = 3x_{11} + 9x_{12} + 2x_{13} + 4x_{21} + 7x_{22} + x_{23} + 5x_{31} + 8x_{32} + 3x_{33}$	B2	
(c)	$\begin{array}{ll} x_{11} + x_{12} + x_{13} = 1 \\ x_{21} + x_{22} + x_{23} = 1 \\ x_{31} + x_{32} + x_{33} = 1 \\ x_{11} + x_{21} + x_{31} = 1 \\ x_{12} + x_{22} + x_{32} = 1 \\ x_{13} + x_{23} + x_{33} = 1 \\ x_{12} + x_{23} + x_{33} = 1 \\ x_{13} + x_$	M1 A1	
	reference to balance	B1	(7)

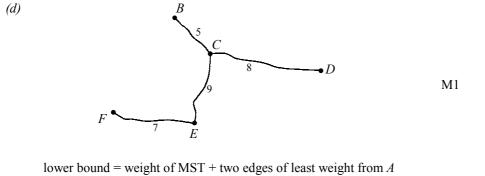
Stage	State	Action	Destination	Total Profit	
1	G	GI	Ι	12*	
	Н	HI	Ι	10*	A1
2	D	DG	G	14 + 12 = 26	
		DH	H	17 + 10 = 27*	
	Ε	EG EH	G H	12 + 12 = 24 18 + 10 = 28*	
	F	FG	G	13 + 12 = 25	M1 A2
		FH	Н	19 + 10 = 29*	
3	A	AD	D	8 + 27 = 35	
		AE AF	$E \\ F$	10 + 28 = 38 14 + 29 = 43*	
	В	BD	D	12 + 27 = 39	
		BE	Ε	10 + 28 = 38	
		BF	F	16 + 29 = 45*	
	С	CD	D	9 + 27 = 36	
		CE	E	13 + 28 = 41	M1 A1
		CF	F	15 + 29 = 44*	
4	Home	Home-A	A	15 + 43 = 58*	
		Home-B	B	11 + 45 = 56	
		Home-C	С	13 + 44 = 57	A1
ing route	HomeAFH	II			M1 A1
ected prof					Al (10)

row min. 27 80 8 81 8 28 60 5 71 5 30 90 7 73 7 0 0 0 0 0		
reducing rows gives:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	
reducing columns will make no difference	B1	
2 lines required to cover all zeros, apply algorithm	B1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	
5 mes required to cover an zeros, apply algorithm		
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 A1	
4 lines required to cover all zeros so allocation is possible	B1	
team A does the windows team B does the conservatory team C does the doors the greenhouse is not done	M1 A1	
total cost = $10 \times (27 + 60 + 7) = \text{\pounds}940$	A1	(13)



6.

(a)


(b)

add
$$AE - 19, BE - 14, DF - 19$$

upper bound = $2 \times$ weight of MST = $2 \times (8 + 5 + 8 + 9 + 7) = 2 \times 37 = 74$ miles M1 A1

(c) use AF saving 8 + 5 + 9 + 7 - 13 = 16use DE saving 8 + 9 - 12 = 5 M1 A1 new upper bound = 74 - 16 - 5 = 53 miles A1

= (5 + 8 + 9 + 7) + 8 + 10 = 47 miles M1 A1 (14)

M1 A2

7. (a) add dummy

	A	В	Dummy	Available	
С	7			7	
D	3	2		5	
Ε		4	4	8	М
Required	10	6	4		

(b) taking
$$R_1 = 0$$
, $R_1 + K_1 = 2$ \therefore $K_1 = 2$ $R_2 + K_1 = 2$ \therefore $R_2 = 0$
 $R_2 + K_2 = 5$ \therefore $K_2 = 5$ $R_3 + K_2 = 6$ \therefore $R_3 = 1$ M1 A2
 $R_3 + K_3 = 0$ \therefore $K_3 = ^{-1}$

	$K_1 = 2$	$K_2 = 5$	$K_3 = -1$
$R_1 = 0$	\bigcirc	3	0
$R_2 = 0$	\bigcirc	\bigcirc	0
$R_3 = 1$	7	\bigcirc	\bigcirc

improvement indices, $I_{ij} = C_{ij} - R_i - K_j$

$$\therefore I_{12} = 3 - 0 - 5 = -2$$

$$I_{13} = 0 - 0 - (-1) = 1$$

$$I_{23} = 0 - 0 - (-1) = 1$$

$$I_{31} = 7 - 1 - 2 = 4$$

(c) pattern not optimal : apply algorithm

	A	В	Dummy
С	$7 - \theta$	θ	
D	$3 + \theta$	$2 - \theta$	
Ε		4	4

let $\theta = 2$

	Α	В	Dummy
С	5	2	
D	5		
Ε		4	4

taking
$$R_1 = 0$$
, $R_1 + K_1 = 2$ $\therefore K_1 = 2$ $R_1 + K_2 = 3$ $\therefore K_2 = 3$
 $R_2 + K_1 = 2$ $\therefore R_2 = 0$ $R_3 + K_2 = 6$ $\therefore R_3 = 3$ M1 A1
 $R_3 + K_3 = 0$ $\therefore K_3 = -3$

	$K_1 = 2$	$K_2 = 3$	$K_3 = -3$
$R_1 = 0$	\bigcirc	\bigcirc	0
$R_2 = 0$	0	(5	0
$R_3 = 3$	(7	\bigcirc	0

$$\therefore I_{13} = 0 - 0 - (^{-3}) = 3$$

$$I_{22} = 5 - 0 - 3 = 2$$

$$I_{23} = 0 - 0 - (^{-3}) = 3$$

$$I_{31} = 7 - 3 - 2 = 2$$
M1 A1

all improvement indices are non-negative \therefore pattern is optimalB1 \therefore 5 from C go to A, 2 from C go to B, 5 from D go to A

 $4 \text{ from } E \text{ go to } B, 4 \text{ from } E \text{ do not play} \qquad A1$ (16)

M1

M1

M1 A1

Performance Record – D2 Paper B

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	nearest neighbour	allocation, formulate lin. prog.	game, graphical method	dynamic prog., max.	allocation, dummy	TSP, shortcuts	transport., n-w corner, stepping- stone	
Marks	6	7	9	10	13	14	16	75
Student								